Not Finding What You're Looking For?

Improving Adherence to Spinal Cord Injury Exercise Guidelines Using Smartphone-Based Technology and E-coaching: A Proof-of-Concept SMART-Design Study
Research Project

Using the Fitbit for Early Detection of Infection and Reduction of Healthcare Utilization after Discharge in Pediatric Surgical Patients
Research Project

COMPLETE: Locomotor Function Following Acute Intermittent Hypoxia and Transcutaneous Electrical Spinal Cord Stimulation in Individuals with Spinal Cord Injury
The purpose of this study is to determine if acute intermittent hypoxia therapy (AIH) combined with transcutaneous spinal cord stimulation (tSCS) during ambulation training improves locomotor function in individuals with spinal cord injury.
Research Project

Assessment of a Microprocessor Ankle for Low Mobility Individuals with Amputation: Phase I
This study is being done to conduct a preliminary investigation into a new prosthetic microprocessor controlled ankle, called the Damping, Stiffness, and Repositioning (DSR) ankle. Participants will visit the 六色网 10-16 times over 9 weeks, each visit lasting approximately 3 hours, to perform a series of walking and mobility tests with both their own prosthetic ankle and the DSR ankle.
Research Project

Breathing Low Oxygen to Enhance Spinal Stimulation Training and Functional Recovery in Persons with Chronic Spinal Cord Injury: The BO2ST Trial
The goal of this double-blind, placebo-controlled, block-randomized clinical trial is to investigate the efficacy and potency of daily acute intermittent hypoxia (AIH) combined with transcutaneous electrical spinal stimulation (tSTIM) and skill-based walking practice.
Research Project
ExoNET for Gait
Is it possible to use a network of springs to make up for what the muscles do during walking and hence assist gait? This study shows the potential of the ExoNET device to reproduce the torques generated by your muscles while you walk. We feel that this structural design can guide devices in the future and may lead to clinical tools that are lightweight, unintimidating, easy to use, and inexpensive.
Research Project

ExoNET
Can you build a minimally-actuated exo-robot as a wearable orthosis? Maybe one that is most simply built out of springs? It may not do everything, but what can you do? The secret is to allow networks of springs, and structural optimization algorithm that tells us how to build it.
Research Project

Identification of sensory-motor control in reaching
Sensory inputs such as vision, proprioception, and touch play a crucial role in post-stroke recovery. Our research delves into how these sensory contributions can be assessed to develop effective, personalized therapy strategies. Enhancing and tailoring sensory inputs to an individual’s needs allows us to explore how learning outcomes can be improved and errors reduced. Through synthetic simulations that combine muscular, visual, and proprioceptive inputs, we aim to understand better the complex processes involved in motor learning.
Research Project

Altering Post-Stroke Motor Recovery
True behavioral restitution, a return to normal motor patterns with the affected limb post-stroke, requires the recruitment and restoration of the residual ipsilesional hemisphere/corticospinal tract (CST). Following stroke, the spontaneous recovery mechanism selectively and continuously uses a more optimized neural network for motor execution, depending on the degree of CST damage.
Research Project

Forearm ExoNET
Can you build a soft, exo-robot as a wearable orthosis to provide assistance during both rehabilitation and activities of daily living? Can this same device also be used as a therapeutic device by tuning to anti-assistance mode, providing more meaningful therapy to the user?
Research Project

Eglove
Body Computer Interface (BCI) is the idea that one can control a robot simply by thinking about it. In this study, we are laying the groundwork for further BCI and robotic development for individuals to control a hand opening device called the Electro encephalographic mediated glove (or Eglove) using an EEG cap connected to a motorized glove.
Research Project